PROCESS
SYNCHRONIZATION

FLAG FOR EACH PROCESS GIVES STATE:

Each process maintains a flag indicating that it wants to get into the critical section. It
checks the flag of the other process and doesn’t enter the critical section if that other
process wants to get in.

Two Processes
Software

Shared variables
+boolean flag[2];
initially flag [0] = flag [1] = false.
=flag [i] = true = P, ready to enter its critical section

do {

flag[i] := true; Are the three Critical
while (flag([j]) ; Section Requirements Met?
critical section

flag [i] = false;
remainder section
} while (1);

Process Synchronization

PROCESS
SYNCHRONIZATION

FLAG TO REQUEST ENTRY:

» Each processes sets a flag to request entry. Then each process toggles a bit to
allow the other in first.

» This code is executed for each process i.

Two Processes
Software

Shared variables

=boolean flag[2];
initially flag [0] = flag [1] = false.
=flag [i] = true = P, ready to enter its critical section Are the three Critical Section
Requirements Met?

do {
flag [i]:= true;
turn = j; o
while (flag [j] and turn == j) ; This is Peterson’s
critical section Solution
flag [i] = false;

remainder section
} while (1);

PROCESS Critical Sections
SYNCHRONIZATION

The hardware required to support critical sections must have
(minimally):

e Indivisible instructions (what are they?)

e Atomic load, store, test instruction. For instance, if a store and
test occur simultaneously, the test gets EITHER the old or the
new, but not some combination.

e Two atomic instructions, if executed simultaneously, behave as if
executed sequentially.

Process Synchronization

PROCESS Hardware
SYNCHRONIZATION Solutions

Disabling Interrupts: Works for the Uni Processor case only. WHY?

Atomic test and set: Returns parameter and sets parameter to true atomically.

while (test_and_set (lock));
/* critical section */
lock = false;

Example of Assembler code:

GET _LOCK: IF_CLEAR THEN_SET BIT _AND_ SKIP <bit _address>
BRANCH GET LOCK /* set failed */
------- /* set succeeded */

Must be careful if these approaches are to satisfy a bounded wait condition - must
use round robin - requires code built around the lock instructions.

Process Synchronization

PROCESS

Hardware
SYNCHRONIZATION Solutions
Boolean waiting[N];
int is /* Takes on values from 0 to N-1 ¥/
Boolean key;
do {
waitingl[i] = TRUE;
key = TRUE;
while(waiting[i] && key)
key = test_and_set(lock); /* Spin lock */

waiting[i] = FALSE;
[***** CRITICAL SECTION *******¥/
j=(i+1)mod N;

while ((j!= i) && (!waiting[j]))
i = (i+1)%N;
if (j==1) Using Hardware
lock = FALSE; Test_and_set.
else

waiting[j] = FALSE;
[r***** REMAINDER SECTION *******/

} while (TRUE); : Process Synchronization

PROCESS Current Hardware
SYNCHRONIZATION Dilemmas

We first need to define, for multiprocessors:

caches,

shared memory (for storage of lock variables),
write through cache,

write pipes.

The last software solution we did (the one we thought was correct) may not
work on a cached multiprocessor. Why? { Hint, is the write by one
processor visible immediately to all other processors?}

What changes must be made to the hardware for this program to work?

. Process Synchronization

PROCESS Current Hardware
SYNCHRONIZATION Dilemmas

Does the sequence below work on a cached multiprocessor?

Initially, location a contains AO and location b contains BO.

a) Processor 1 writes data A1 to location a.
b) Processor 1 sets b to B1 indicating data at a is valid.

c) Processor 2 waits for b to take on value B1 and loops until that
change occurs.

d) Processor 2 reads the value from a.
What value is seen by Processor 2 when it reads a?

How must hardware be specified to guarantee the value seen?

a: A0 b: BO

Process Synchronization

PROCESS Current Hardware
SYNCHRONIZATION Dilemmas

We need to discuss:

Write Ordering: The first write by a processor will be visible before the
second write is visible. This requires a write through cache.

Sequential Consistency: If Processor 1 writes to Location a "before"
Processor 2 writes to Location b, then a is visible to ALL processors before
b is. To do this requires NOT caching shared data.

The software solutions discussed earlier should be avoided since they require
write ordering and/or sequential consistency.

Process Synchronization

PROCESS Current Hardware
SYNCHRONIZATION Dilemmas

Hardware test and set on a multiprocessor causes

ean explicit flush of the write to main memory and
ethe update of all other processor's caches.

Imagine needing to write all shared data straight through the cache.
With test and set, only lock locations are written out explicitly.

In not too many years, hardware will no longer support software solutions
because of the performance impact of doing so.

Process Synchronization

